
RADIAL INSTABILITY OF ONE- AND TWO-LAYER CYLINDRICAL SHELLS DURING 

IMPULSIVE COMPRESSION 

A. I. Abakumov, S. K. Zhabitskii, and S. A. Novikov UDC 539.3;534.1 

Multilaminate thin-walled shells are used in many structures which are subjected in 
service to intensive impulsive loading (such as blast chambers). One problem connected with 
analyzing the strength of such structures is the problem of dynamic loss of stability. Most 
attention has been focused on one-layer shells in this regard [1-6]. An important result of 
theoretical studies has been the derivation of relations which make it possible to predict 
the number of critical bending modes for which the increase in amplitudes will be maximal. 
These relations also make it possible to predict the size of the pulse required to excite 
these modes to significant amplitudes [2]. While there have been numerous studies of the 
dynamic loss of stability of one-!ayer shells under impulsive loading, the number of publi- 
cations devoted to describing the behavior of two-layer shells is limited. This may have 
to do with the complexity of accounting for contact interactions between the layers. 

The present study, being a continuation of [7], is devoted to a theoretical-experimen- 
tal investigation of the dynamic loss of stability of metallic one- and two-layer cylindri- 
cal shells subjected to impulsive radial compression. The one-layer shells were made of 
steel St. 20 and preannealed copper (MI), while the two-layer shells were all made of St. 
20. There were no gaps between the layers in the two-layer shells. 

Figure 1 presents a diagram of the setup of the experiments. A layer 3 of a plastic 
explosive (PEX) was placed on the outside surface of the shell i. To obtain a pulse of the 
required duration, a damping element in the form of an intermediate layer 2 made of poly- 
styrene foam with a density of =0.2 g/cm 3 and thickness of 5 mm was placed between the PEX 
and the shell. The shell was loaded by the sliding detonation of the PEX layer initiated 
simultaneously around the circumference by means of an additional disk 4 of PEX. The added 
disk was exploded with a detonator 5 placed at its center. 

To study the radial loss of stability of a cylindrical shell, simultaneous loading over 
the entire surface is certainly to be preferred. However, this approach is fairly compli- 
cated to implement as a practical matter. In order to analyze the character of loading for 
simultaneous detonation and sliding detonation of the PEX layer, we set up special tests. 
These tests showed that the pattern of deformation of the cylindrical shell was similar in 
each case. The simplicity and practicability of loading a shell by the sliding detonation 
of a plastic explosive are the reasons for the wide use of this method in tests of the type 
conducted here. 

Inertial convergence of the shell toward its center was observed during the loading. 
Here, loss of stability occurred with the formation of lengthwise folds. We determined the 
residual form of the shell after the test. The main parameters of the tested shells (where 
h is the thickness of the one-layer shell, h i and h 2 are the thicknesses of the external and 
internal layers of the two-layer shell, J0 is the unit loading pulse, and v 0 is the theoret- 
ical initial velocity) and the test results are shown in Tables 1 (for the one-layer shells) 
and 2 (for the two-layer shells). 

It is evident from tests involving the loading of one-layer shells with the relative 
radius R/h = 17.2 that the steel and copper shells became unstable in a similar manner. 
With an increase in the thickness of the shell (R/h = I0.i), cleavage is seen along with 
loss of stability. The cleaved layer, 1.0-1.5 mm thick, becomes unstable by a flexural 
mode having a high number compared to the shell proper as it moves toward the geometric cen- 
ter of the shell (Fig. 2 and Table i, tests ii and 12). 

The problem of the character of the loss of stability for a one-layer shell can be 
solved by using the data in [1-4], as an example. The problem of the stability of a two- 
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layer shell must be addressed from the moment the shell undergoes cleavage. In one case, 
the character of instability differs from that for the one-layer shell. In particular, it 
is evident from the tests with the two-layer shells (Fig. 3) that loss of stability occurs 
by a low flexural mode (n = 4) and by a high-numbered mode (n = 10-13). 

We will describe the behavior of the two-layer shells by resorting to the solution of 
problems of the dynamics of axisymmetric thin-walled elastoplastic structures [8]. The de- 
termining equations in this approach are Timoshenko-type shell equations which account for 
rotational inertia and shear strain. Geometric nonlinearity is assured by stepwise restruc- 
turing of the original geometry of the shell, which makes it possible to examine large 
strains and deflections of the structure. The equations of the theory of plastic flow are 
used as the physical relations. 

In solving problems concerning the combined motion of the contacting layers of a multi- 
layered shell, we chose to use the model of ideally plastic contact on matching grids. Here, 
we employed the "node-in-node" scheme. The contact condition was extended to cover all of 
the nodes of the difference grid as an impermeability condition. The possibility of contact 
is checked at each time step during the computation. Constraints based on the conditions of 
kinematic compatibility were imposed on the kinematically possible displacement rates for a 
contacting pair of nodes. In this case, the motion of the nodes is determined by the total 
forces and masses. The given model can be used when the forces of the contacting pair are 
associated with small relative tangential displacements. 

Considering the shortness of the shell used in the tests (L/2R ~ 2) and the character 
of the acting load, it can be assumed that a stress-strain state which is close to plane 
stress Was realized in the specimen. This allows us to regard the shell as a two-laye r 
ring. The correctness of this approach was checked by numerical methods in which the shell 
was represented in the form of a ring and an infinite cylinder. The acting load in the cal- 
culations was modeled by a triangular pulse with a duration close to one-fourth of the period 
of natural vibration of the shell. With allowance for the effect of the strain rate, the 
yield point of the material of the shell layers (St. 20) was taken equal to 50 kg/mm 2 [4, 
i0]. When the shell described above is subjected to impulsive compression, compressive 

74 



Fig. 2 

Fig. 3 

stresses develop in its layers. The creation of these stresses in turn leads to an increase 
in the amplitude of the bending modes [i]. Of all the bending modes in the spectrum, only a 
certain number increase very rapidly. These are referred to as the critical modes [9]. 

Analysis of the experimental results on the residual state of the two-layer shells shows 
that two regions of critical bending modes are realized in them: a region of low modes (nl); 
a region of high modes (n2). According to our calculations, the layers in the two-layer 
shell work together during the stage of elastic deformation as movement takes place toward 
the geometric center. A rapid increase in the amplitudes of the bending modes is seen with 
frequencies that are close to half the frequency of the radial vibrations. The n~nber of 
these modes can be determined either by numerical calculations or by using the relation [9] 

n i = /~-~R/h). For the shell being examined here R = 5 cm, the total thickness of the lay- 
ers h = hl + h2 = 0~ cm. As a result, nl ~ 4. 

With the transition of the shell to the elastoplastic strain state, higher bending modes 
are excited. In determining the number of the corresponding critical bending mode, we as- 
signed the initial deflection in accordance with a cosine law [9] when we performed calcula- 
tions for one of the (internal) layers. The amplitude of the deflection was (0.01-0.02)h 2, 
which is within the manufacturing tolerance. We chose ~ = &/h 2 (where & is a quantity equal 
to the difference between the largest and smallest deviations of the middle surface of the 
internal layer of the shell at a specific moment of time) as a parameter characterizing the 

75 



A 

f,4. 

Fig. 4 Fig. 5 

increase in the bending mode. Figure 4 shows the dependence of A on Che number of the ex- 
cited bending mode for an internal layer at one moment of time (t = 160 Dsec). It is evi- 
dent from the figure that the number of the critical bending mode n 2 = 10-13. 

With allowance for the results obtained above, to describe the loss of stability of a 
two-layer ring we assigned flaws in the form of initial deflections corresponding to both 
critical bending modes: n ! = 4 for the external layer and n 2 = 12 for the internal layer, 
with the amplitudes of the deflection 0.02h i and 0.02h 2. 

It was noted in the course of the calculations that the noticeable transition of the 
shell to new bending modes nearly ceases by the moment of time t*. This moment corresponds 
to the moment by which the layers have moved a distance equal to 2-3 thicknesses. Contact 
between the layers from this moment occurs over local regions, which causes the effect of 
the layers on one another to diminish. This makes it possible to examine the subsequent 
motion of the layers without allowance for contact interaction, which in turn allows us to 
make use of the above-described model of contact between the layers. In the calculations, 
the process of loss of stability was described only for the internal layer beginning with 
the moment of time t*. Figure 5 compares the results for the final state of the internal 
layer of the shell and the experimental data 3 (Table 2). In the figure, 1 denotes the ex- 
perimental results, while 2 denotes the calculated results. It can be seen that the two 
sets of data agree satisfactorily in both a qualitative and quantitative sense. 

It follows from the results of our analysis that a bending mode (n i = 4) with a fre- 
quency close to half the radial frequency is excited in a two-layer shell during the stage 
of elastic deformation. The crests and troughs of this mode, characteristic of both layers 
of the shell, are such as to require boundary conditions of the "rigid wall" type (prohib- 
iting shear displacements and constraints on the angle of rotation of the cross section and 
radial displacement). This in turn results in the breakup of the cross section of the shell 
into isolated curvilinear elements (eight in the given case). During their motion toward 
the geometric center, these elements become unstable by a bending mode corresponding to the 
second region of instability (n 2 = 10-13). Here, a curvilinear element behaves as a rod 
which is subjected to impulsive axial compression. 

Thus, proceeding on the basis of the results of experiments and calculations performed 
with a numerical model, we examined loss of stability by cylindrical shells subjected to im- 
pulsive compression. The correctness of the above interpretation of the process is supported 
by the agreement of the theoretical and experimental data on the residual state of the two- 
layer shell. 
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SOLUTIONS, WITH A DEGENERATE HODOGRAPH, OF QUASISTEADY EQUATIONS OF 

THE THEORY OF PLASTICITY WITH THE VON MISES YIELD CONDITION 

S. V. Meleshko UDC 5 3 9 . 2  

Simple waves are often used from solutions with a degenerate hodograph in the theory of 
plasticity when the system of equations which describes plastic flow is hyperbolic and has 
two independent variables. There are only isolated instances of the construction of such 
solutions in a plastic body when the number of independent variables is greater than two. 
In this study, we present a complete classification of double waves in the case of a plastic- 
rigid body described by quasisteady equations characterized by functional arbitrariness 

div v --  O; 

~)vi/3x/ + ~)v/Oxi ---- 2LFSu (i, j : 1, 2, 3) 

with the yon Mises yield criterion 

S ~ S ~  -- 2k ~. 

(i) 

(2) 

(3) 

(4) 

Here, (Sij) is the deviator of the stress tensor (S~ = 0); v = (vz, v 2, v3)' is the vector 
of the rate of displacement; o is the normal stress; k is the yield point in shear; �9 is the 
proportionality factor in the associated flow law; summation is performed from 1 to 3 over 
the repeating Greek-letter indices. Without loss of generality, we take S I # 0 (S i m Sii , 
i = i, 2, 3, $3 = -Sl - S2). 

Ov~ 
Equations (3) are inhomogeneous. Since S i # 0, from (3) at i = j = ! we find ~ = S 10x~" 

A f t e r  we e x c l u d e  �9 f r o m  t h e  r e m a i n i n g  e q u a t i o n s  o f  ( 3 ) ,  we o b t a i n  a c l o s e d  h o m o g e n e o u s  s y s -  
tem o f  n i n e  q u a s i l i n e a r  d i f f e r e n t i a l  e q u a t i o n s  r e l a t i v e  t o  n i n e  u n k n o w n s :  ( 1 ) ,  ( 2 ) ,  ( 4 ) ,  
and  

Sl(Ovi/Ox: ~ Ov/~xi) --2SuOu/Ox~ : 0 (i, ] = t, 2, 3). (s) 
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